About Dr. Peng
Source:    Publish Time: 2010-07-26 00:00    Views   Size:  16px  14px  12px
Liangcai Peng, Ph.D.


Liangcai Peng, Ph.D.9A00?e=.jpg

Professor of Plant Biology, Changjiang Scholar,

School of Life and Health Science,

Hubei University of Technology,

Wuhan, Hubei, 430068,

P.R. China.

Email: lpeng@mail.hzau.edu.cn



Education:
Ph.D. in Biochemistry and Molecular Biology. Australian National University, Canberra, Australia.
M.Sc. in Plant Biochemistry. Chinese Academy of Agricultural Sciences, Beijing, China.
B.Sc. in Agronomy. Huazhong Agricultural University, Wuhan, China.


Professional Affiliations:
Associate Editor of Green Carbon, Member of China Plant Physiologist Society, China Geneticist Society, American Society of Plant Biologists, Australian and New Zealand Society for Cell Biologists; Member of China Biomass and Bioenergy consulting committee and Hubei advising committee for biotechnology and bio-product promotion.

Selected Publications:

1. Peng, L., Kawagoe, Y., Hogan, P., Delmer, D.* Sitosterol b-1,4-glucoside as primer for cellulose synthesis in plants. Science. 295: 147-150, 2002 (IF: 63.714; Times Cited: 768)

2. Arioli, T., Peng L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., Williamson, R. E.* Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 279: 717-720, 1998 (IF: 63.714; Times Cited: 1554)

3. Zhang, R.#, Hu, Z. #, Wang, Y., Hu, H., Li, F., Li, M., Ragauskas, A., Xia, T., Ha, H., Tang, J., Yu, H.*, Xu, B.*, Peng L.* Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nature Communications. 14: 1100, 2023 (IF:17.694; Times Cited: 6)

4. Hu, Z.#, Li, Q.#, Chen, Y., Li, T., Wang, Y., Zhang, R., Peng, H., Wang, H., Wang, Y., Tang, J., Aftab, M., Peng, L.* Intermitten ultrasound retains cellulases unlock for enhanced cellulosic ethanol with high-porosity biochar for dye adsorption using desirable rice mutant straw. Bioresource Technology. 369: 128437, 2023 (IF: 11.889; Times Cited: 5)

5. Zhang, R.#, Hu, Z.#, Peng, H., Liu, P., Wang, Y., Li, J., Lu, J., Wang, Y., Xia, T. *, Peng, L.* High density cellulose nanofibril assembly leads to upgraded enzymatic and chemical catalysis of fermentable sugars, cellulose nanocrystals and cellulase production by precisely engineering cellulose synthase complexes. Green Chemistry. 25: 1096, 2023 (IF: 11.034; Times Cited: 7)

6. Madadi, M. Wang, Y., Xu, C., Liu, P., Wang, Y., Xia, T., Tu, Y., Lin, X., Song, B., Yang, X., Zhu, W., Duanmu, D., Tang, S.*, Peng L.* Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. Journal of Hazardous Materials. 406:124727, 2021 (IF: 14.224; Times Cited: 47)

7. Zhang, R., Hu, H., Wang, Y., Hu, Z., Ren, S., Li, J., He, B., Wang, Y., Xia, T., Chen, P., Xie, G., Peng L.* A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. Journal of Experimental Botany. 71: 2956-2969, 2020 (IF: 7.298; Times Cited: 25)

8. Alam, A., Wang, Y., Liu, F., Kang, H., Tang, S., Wang, Y., Cai, Q., Wang, H., Peng, H., Li, Q., Zeng, Y., Tu, Y., Xia, T., Peng, L.* Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renewable Energy. 159: 1128-1138, 2020 (IF: 8.7; Times Cited: 49)

9. Wu, L.# Feng, S.,# Deng, J., Yu, B., Wang, Y., He, B., Peng, H., Li, Q., Hu, R.,* Peng L.* Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chemistry. 21: 4388–4399, 2019 (IF: 11.034; Times Cited: 41)

10. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng L.* Mild chemical pretreatments are sufficient for bioethanol production in transgenic rice straws overproducing glucosidase. Green Chemistry. 20: 2047-2056, 2018 (IF: 11.034; Times Cited: 72)

11. Hu, H., Zhang, R., Dong, S., Li, Y., Fan, C., Wang, Y., Xia, T., Chen, P., Feng, S., Persson, S., Peng L.* AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany. 69: 1065-1080, 2018 (IF: 7.298; Times Cited: 23)

12. Li, F.#, Xie, G.#, Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia, T., Qu, C., Hu, F., Ragauskas, A., Peng L.* OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal. 15: 1093-1104, 2017 (IF: 13.8; Times Cited: 121)

13. Fan, C., Feng, S., Huang, J., Wang, Y., Wu, L., Li, X., Wang, L., Xia, T., Li, J., Cai, X., Peng L.* AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharifcation and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels. 10: 221, 2017 (IF: 7.67; Times Cited: 70)

14. Zahoor, Sun, D., Li, Y., Wang, J., Tu, Y., Wang, Y., Hu, Z., Zhou, S., Wang, L., Xie, G., Huang, J., Alam, A., Peng L.* Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology. 243: 957-965, 2017 (IF: 11.889; Times Cited: 32)

15. Wang, Y.#, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances. 34(5): 997-1017, 2016 (IF: 17.681; Times Cited: 168)

16. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175: 82-90, 2016 (IF: 11.446; Times Cited: 158; ESI高被引论文)

17. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF: 13.8, Times Cited: 141)

18. Li, M.#, Si, S.#, Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M., Zhao, C., Tu, Y., Zhou, S., Peng L.* Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technology. 169: 447-454, 2014 (IF: 11.889, Times Cited: 108)

19. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 30-37, 2013 (IF: 11.889; Times Cited: 133)

20. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1): 58, 2012 (IF: 7.67; Times Cited: 296)

21. Xie, G., Peng L.* Genetic engineering of energy crops: A strategy for biofuel production in China. Journal of Integrative Plant Biology. 53: 143-150, 2011 (IF: 11.4; Times Cited: 113)

22. Wang, L.#, Guo, K.#, Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X., Peng L.* Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology. 10: 282-298, 2010 (IF: 5.3; Times Cited: 259)

23. Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2001 (IF: 8.34; Times Cited: 170)

24. 王艳婷, 徐正丹, 彭良才*. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学:生命科学. 44(8): 766-774, 2014. (被引次数: 64)

25. 彭良才. 论中国生物能源发展的根本出路[J]. 华中农业大学学报. (2): 1-6, 2011. (被引次数: 128)




Hard work , Independent work , Team work