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• OsCOMT knock-out mutants show 
slightly altered plant growth and 
biomass yield. 

• Improved anti-oxidation capacity for 
heavy-metal phytoremediation in the 
mutants. 

• Remarkably enhanced biomass 
saccharification for high-yield 
bioethanol production. 

• Modified lignin favors for smaller 
nanoparticles and high-yield carbon 
quantum dots. 

• A novel mechanism about one-gene 
mutation for improving biofuels, 
bioproducts and antioxidation. 
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Introduction: Crop straws provide substantial biomass resources that are transformable for sustainable 
biofuels and valuable bioproducts. However, the natural lignocellulose recalcitrance results in an expen-
sive biomass process and secondary waste liberation. As lignin is a major recalcitrant factor, genetic engi-
neering of lignin biosynthesis is increasingly being implemented in bioenergy crops, but much remains 
unclear about the desired lignocellulose alteration and resulting function. 
Objectives: This study attempted to explore the mechanisms of lignin modification responsible for effi-
cient lignocellulose conversion in vitro and an effective plant anti-oxidation response in vivo. 
Methods: We initially selected specific rice mutants by performing modern CRISPR/cas9 editing with caf-
feic acid O-methyltransferase involved in the synthetic pathways of monolignols (G, S) and ferulic acid 
(FA), and then explored lignocellulose conversion and plant cadmium (Cd) accumulation using advanced 
chemical, biochemical and thermal-chemical analyses. 
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Introduction 

Lignocellulosic biorefineries are critical for empowering the 
bioeconomy from advanced biofuels and valuable bioproducts 
[1]. However, the recalcitrance of lignocellulose fundamentally 
restrains its enzymatic hydrolysis, leading to costly biomass con-
version and secondary waste release into the environment [2–4]. 
In principle, lignocellulose recalcitrance accounts for plant cell wall 
composition, polymer feature, and interlinkage [5,6]. In particular, 
lignin plays a crucial role in recalcitrance from its substantial depo-
sition, which reinforces the impermeable structure of plant cell 
walls and causes cellulose microfibrils inaccessible for enzymatic 
digestion. In addition, it impedes lignin exaction and conversion 
for bioproduction [7,8]. Therefore, genetic and chemical lignocellu-
lose modifications have been integrated to realize low-cost biofu-
els and high-value bioproducts under green processes [9]. 

As cellulosic ethanol has been evaluated to be an excellent addi-
tive into gasoline, lignin is increasingly being considered a partial 
substitute for fossil fuels [10,11]. Concerning its chemical proper-
ties, lignin is convertible to various bioproducts, and thermal-
chemical treatments have been conducted with distinct lignin 
substrates to generate desirable nanocarbons [12,13]. As i
contains several functional groups such as hydroxyl, methoxyl, car-
bonyl and carboxyl, lignin is progressively used as an effective 
antioxidant scavenger by reducing oxygen radicals and stabilizing 
oxidation reactions [14,15]. Although it has significant potential as 
a sustainable material to produce value-added bioproducts, lignin 
is particularly recalcitrant to existing chemical technologies, owing 
to its natural complexity, high degree of polymerization and stable 
chemical bonds [16,17]. Thus, lignin valorization poses challenges 
regarding selectivity, yield, and efficiency [18–20]. Similarly, it is 
technically difficult to generate highly valuable nanomaterials 
because lignin substrates have large particle size, heterogeneity, 
poor dispersibility and irregular morphology [21,22]. Nevertheless, 
genetic engineering of lignin biosynthesis is a promising solution 
for producing desired lignin substrates convertible for assorted 
bioproduction. 

Lignin is an aromatic heteropolymer consisting mainly of p-
hydroxyphenyl (H), syringyl (S), and guaiacyl (G) units, which are 
polymerized by the radical coupling of three monolignols: p-
coumaryl, sinapyl and coniferyl alcohols [23–25]. Since the major 
enzymes involved in lignin biosynthetic pathways are identified, 
genetic engineering of lignin biosynthesis has been attempted to 
improve lignin recalcitrance in various plants [26–29]. For exam-
ple, the down regulation of caffeic acid O-methyltransferase 
(COMT), which is involved in monolignol biosynthetic pathways, 
has led to a remarkable enhancement in biomass enzymatic sac-
charification [30–35]. Because CRISPR/Cas9 technology is applica-
ble for genome editing in plants, precise mutations of the major 

t
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genes associated with lignin biosynthesis have been attained in 
different crops [36]. Despite the structural complexity and biolog-
ical functions of plant cell walls, precise genetic engineering of lig-
nin biosynthesis may provide valuable information for insights 
into the specific functions of lignin on biomass conversion or plant 
antioxidative responses to abiotic stresses. 

Rice is a major food crop with large amounts of lignocellulose-
rich straws over the world, and also is a desired genetic-model 
plant for efficient gene-editing [34–37]. In this study, we identified 
one OsCOMT gene preferentially expressed in lignocellulose-rich 
stem tissue and generated distinct mutants using the CRISPR/ 
Cas9 tool. We then examined the lignin composition and lignocel-
lulose porosity in three independent homozygous mutants 
(Oscomts) and the wild-type (WT), and determined their biomass 
enzymatic saccharification and bioethanol production under NaOH 
pretreatment. Chemical and thermal-chemical processes were per-
formed to generate dimension-reduced lignin nanoparticles (LNPs) 
and carbon quantum dots (CQDs). Notably, we detected a signifi-
cantly improved antioxidative capacity in vitro and efficient cad-
mium (Cd) accumulation in vivo in young seedlings of the 
mutants. Based on the major findings achieved, this study proposes 
a mechanism model for characteristic lignin modification by pre-
dominately reducing S-monomer synthesis, thereby providing an 
integrated strategy for precisely genetic-engineering of lignin 
biosynthesis and efficiently chemical-catalysis of lignocellulose in 
bioenergy crops. 

Results 

Selection of oscomt mutants involved in catalyzation of lignin 
biosynthesis 

By searching the TIGR database, this study initially identified 
DNA sequences matching to the OsCOMT family in rice, and gener-
ated an unrooted phylogenetic tree from alignments of OsCOMT 
proteins along the orthologous AtCOMTs in Arabidopsis [33–35]. 
In a comparison, one OsCOMT was closest to the AtCOMT in terms 
of protein similarity (99 % identity) and motif constitution (Fig. S1), 
and its OsCOMT gene was prominently expressed in the 
lignocellulose-rich tissues such as the culm, mature sheath, pani-
cle, hull, and spikelet, according to the OsCOMT co-expression pro-
filing obtained from the CREP database (https://crep.ncpgr.cn) 
including the genome-wide expressions of 33 tissues almost 
throughout the entire life cycle of rice (Fig. S2). This revealed that 
the OsCOMT identified was an appropriate target gene for genomic 
editing. To perform CRISPR/Cas9 genomic editing, we selected one 
specific region in exon 3 of the OsCOMT gene with a 20 bp target 
site for designing a sgRNA using the CRISPR-P program. Binary con-
structs carrying the sgRNA within the target region with Cas9 dri-
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ven by UBIp were generated (UBIp: Cas9-OsCOMT), and trans-
formed into the Japonica rice cultivar (Nipponbare/NPB) via 
agrobacterium-mediated transformation, resulting in 59 indepen-
dent transgenic lines. A total of 43 positive transgenic lines were 
thus identified by PCR, and 10 lines were sequenced to verify gene 
editing. Finally, this study screened out three independent 
homozygous transgenic OsCOMT-edited lines termed as Oscomt-
1,-2,-3, which exhibited a 20 bp deletion (Oscomt-1) and 1 bp addi-
tion (Oscomt-2,-3) in the target regions for the knock-out of 
OsCOMT in three mutants (Fig. S3). 

In the field experiments over six years, we observed slightly 
affected plant growth and development among the three Oscomt 
mutants, compared with the WT (NPB) (Fig. 1a). Despite the rela-
tively shorter plant heights, the three mutants maintained similar 
biomass yields to the WT (Table S1), which was partially confirmed 
by growing one representative mutant (Oscomt-1) in two distinct 
ecological regions on large scale (Table 1). By performing our 
previously-established chemical analyses with mature rice straws 
[9,34], we detected significantly reduced lignin levels by 15 %– 
16 % at p < 0.01 (n = 3) in the three mutants (Fig. 1b), but examined 
relatively higher hemicellulose and cellulose contents by 7 %–14 % 
as compared with the WT (Fig. S4), indicating that the raised wall 
polysaccharides may compensate for the reduced lignin deposition 
to maintain similar biomass yields in three mutants. In addition, 
similar monosaccharide compositions of hemicelluloses were 
detected between the three mutants and the WT (Table S2), sug-
gesting that hemicellulose biosynthesis was not affected in the 
mutants. 

Concerning lignin reduction in three mutants, we conducted 
13 C–1 H HSQC 2D NMR analysis to profile the monolignol constitu-
tion and chemical linkages of lignin (Fig. 1c; Fig. S5). The S-
monomer proportions of the three Oscomt mutants were from 
21 % to 24 % (of total aromatics), almost 2-fold less than that of 
the WT (42 %). Accordingly, the three mutants showed higher pro-
portions of the G-monomer (74 %–76 %) and FA (13 %–15 %) than 
the WT did (53 % and 7 %), whereas their tricin levels were 
decreased by 53 %–60 % relative to the WT. The FA levels were fur-
ther confirmed by HPLC analysis (Fig. 1d), which suggested that 
down-regulation of S-monomer synthesis may occur for the rela-
tively increased G-monomer and FA accumulation in the mutants. 
Meanwhile, much lower H-monomer proportions were deter-
mined in both mutants and WT, consistent with the previous 
reports [33–35]. Notably, NMR profiling revealed a dual alteration 
of major monolignol linkages in the three mutants (Fig. S5). Com-
pared to the WT, the mutants showed a unique reduction of b-O-4 
proportion, but had a much increase of the b-5 and c-ester bonds, 
being agreement with the decrease in lignin biosynthesis in terms 
of S-monomer suppression. In addition, as the mutants were of 
increased b-Xyl2 proportion, it is assumed that the down regula-
tion of lignin biosynthesis may relatedly alter lignin interlink with 
hemicellulose in three mutants. 

Enhanced biomass saccharification and bioethanol conversion 

Regarding lignin reduction in three mutants, this study exam-
ined biomass saccharification by estimating both hexoses and total 
sugar yields released from the enzymatic hydrolysis of mature rice 
straws without pretreatment. As a comparison, three mutants 
showed significantly enhanced biomass enzymatic saccharification 
compared to the WT at p < 0.01 levels (n = 3) with increased rates 
of 9 %–26 % (Fig. S6). Under our previously established pretreat-
ment with 1 % H2SO4 [9], three mutants showed the biomass sac-
charification increased by 34 %–66 % relative to the WT (Fig. S6). 
Notably, after mild alkali (1 % NaOH) pretreatment, the three 
mutants exhibited almost complete cellulose hydrolysis with 
hexoses yields ranging from 97 % to 100 % (% cellulose). In contrast, 
3

the WT had the hexoses yield of 77 % (Fig. 2a & b). By further per-
forming classic yeast fermentation for hexoses conversion into 
ethanol, this study examined consistently higher bioethanol yields 
(% dry matter) in three mutants with increased rates of 16 %–32 % 
(p < 0.01, n = 3) compared to the WT (Fig. 2d). Based on the total 
sugars yield obtained from pretreatment and enzymatic hydrolysis 
(Fig. 2c), the three mutants could achieve total bioethanol yields of 
16 %–17 %, whereas the WT only produced bioethanol of 13 % by 
calculating xylose-ethanol conversion in theory (Fig. 2e). Because 
of their significantly reduced lignin levels and relatively increased 
cellulose and hemicellulose contents, the three mutants could con-
sistently achieve much enhanced biomass enzymatic saccharifica-
tion for high-yield bioethanol production, even under mild 
chemical pretreatments. 

Effective lignin extraction for upgraded biomass porosity 

To understand almost complete biomass enzymatic saccharifi-
cation under 1 % NaOH pretreatment in three mutants, we exam-
ined the wall polymer levels remaining in the pretreated residues 
(Fig. 3a). Compared to the raw materials (without pretreatment), 
approximately 53 %–58 % lignin was extracted from alkali pretreat-
ment in the three mutants with 42 % lignin removal in the WT, but 
both mutants and WT showed similar hemicellulose extraction 
rates of 6 %–9 % (Fig. 3b; Fig. S7), which is consistent with the 
altered interlinkages between lignin and hemicelluloses as 
described above. 

Because lignin extraction can improve biomass porosity for 
enzyme accession and loading [38,39], we performed Simon’s 
staining of lignocellulose substrates after 1 % NaOH pretreatment. 
Compared with the raw materials, the alkali-pretreated lignocellu-
lose substrates showed significantly increased yellow (DY) and 
blue (DB) dyes adsorption capacities in both mutants and WT sam-
ples (Fig. S8). However, three mutants had much higher DY and DB 
values than the WT did in the alkali-pretreated lignocellulose sub-
strates (Fig. 3c). Because DY and DB values account for the large 
and small pore sizes of lignocellulose substrates, respectively 
[40], this study conducted correlation analyses among wall poly-
mers extraction levels, DY/DB adsorption values and hexoses or 
total sugars yields. As a result, three parameters (DY, DB, and 
DY + DB/total pores) of biomass porosity were positively correlated 
with lignin extraction levels at p < 0.01 (n = 3), but not with hemi-
cellulose extraction (Fig. 3d). Notably, the biomass porosity was 
also significantly positive to account for the hexoses and total sug-
ars yields released from the enzymatic hydrolysis of raw materials 
and pretreated-lignocellulose substrates in both mutants and WT 
(Fig. 3e). The lignin extraction rate and level from alkali pretreat-
ment showed a significant positive correlation with hexoses and 
total sugars yields, whereas no correlation was found with hemi-
cellulose extraction (Fig. S9). Meanwhile, we observed obviously 
rougher surfaces of the pretreated-lignocellulose substrates in 
three mutants than the WT under scanning electron microscopy, 
which was quantitatively confirmed by measuring their surface 
roughness (Fig. S10). Therefore, the results revealed that effective 
lignin extraction could play a major role in upgrading biomass 
porosity for enhanced biomass enzymatic saccharification in the 
lignin-modified mutants. 

Size-reduced lignin nanoparticles and high-yield carbon quantum dots 

Because the three mutants had reduced lignin levels and altered 
monolignol constitution and interlinkage, we measured their 
molecular weights ranging from 4929 Da to 5415 Da, which were 
much smaller than those of the WT at 7668 Da (Fig. 4a). Moreover, 
the three mutants had lower Mw/Mn ratios accounting for their 
more uniform molecular distributions relative to the WT



H. Yu, G. Zhang, J. Liu et al. Journal of Advanced Research xxx (xxxx) xxx

Fig. 1. Characterization of lignin levels and composition in three rice Oscomt site-mutants (Oscomt-1,−2,−3) and wild type/WT. (a) Plant images at heading stage (scale 
bar as 15 cm); (b) Lignin level of mature rice straws; (c) 2D HSQC-NMR spectra of lignin composition and linkages; (d) Chemical analysis of ferulic acid. DM: Dry matter, Data 
as means ± SD (n = 3) with Student’s t-test as significant differences between mutants and WT at **p < 0.01, and the percentage (%) calculated by subtraction between mutant 
and WT values divided by WT. 

Table 1 
Agronomic traits of rice Oscomt-1 mutant & WT grown in Beijing and Wuhan. 

Planting 
region 

Sample Plant 
height (cm) 

Tillering 
number 

Grain 
yield 
(t ha−1 ) 

Biomass 
(t ha−1 ) 

Harvest 
index (%) 

Panicles 
m−2 

Spikelets 
Panciles−1 

Spikelets 
m−2 (×103 ) 

Grain filling 
(%) 

1000-grain 
weight (g) 

Beijing 
(N40°13′54′′, 
E116°33′50′′)# 

WT 115.3 ± 2.4 11.1 ± 0.4 5.5 ± 0.1 12.4 ± 0.3 38.9 ± 1 274.8 ± 4.5 105.5 ± 4.5 29 ± 1.4 73.3 ± 3.4 23.3 ± 0.3 
Oscomt 98 ± 3.1** 12.4 ± 0.6* 5.6 ± 0.3 11.8 ± 0.7 42.6 ± 0.6* 319.8 ± 10.1** 89.4 ± 5* 28.6 ± 2 77.9 ± 4.2 22.5 ± 0.1 

Wuhan 
(N30°27′55′′, 
E114°21′20′′) 

WT 120.2 ± 4.1 15.6 ± 0.6 5.3 ± 0.5 13.8 ± 1.1 34.6 ± 0.5 376.2 ± 36.7 92.9 ± 6.9 34.8 ± 2.4 58.7 ± 1.4 23.3 ± 0.3 
Oscomt 101.3 ± 2.7** 15.3 ± 1.1 5.3 ± 0.4 12.5 ± 0.7 37.5 ± 1.1* 407.6 ± 30.4 81.5 ± 2.7 33.2 ± 2.1 64 ± 2.7 22.5 ± 0.1 

# Latitude and longitude; Data as means ± SD (n = 3) with Student’s t-test as significant difference between mutant and WT at **p < 0.01 or *p < 0.05. 
(Table S3). Consequently, we performed a simple microwave treat-
ment to generate lignin nanoparticles (LNPs) using total lignin and 
two other lignin substrates extracted from 1 % NaOH pretreatment 
and sequential enzymatic saccharification in two representative 
mutants and WT. Based on dynamic light scattering analysis, lar-
gely varied LNP diameters were measured from 10 nm to 
396 nm among the three types of lignin substrates; much smaller 
LNPs (10 nm-14 nm) were generated in the lignin substrates 
released from the enzymatic hydrolysis of alkali-pretreated ligno-
celluloses (Fig. 4b–d). In contrast, two representative mutants pro-
duced much smaller LNPs than the WT in all lignin substrates, 
consistent with their reduced lignin molecular weights. Further-
more, we observed the morphological distribution of LNPs from 
total lignin substrates under transmission electron microscopy, 
and the LNPs diameters were significantly decreased by 35 %– 
48 % in the mutants at p < 0.01 level compared with the WT 
(Fig. 4e), demonstrating a remarkable size-reduced LNPs assembly 
in the mutants. In particularly, one mutant produced significantly 
homogeneous LNPs than the WT, which was confirmed by the 
much lower coefficient of variation (CV) of the mutant at 11.3 % 
relative to the WT at 20.9 %. 

To detect the function of the size-reduced LNPs, this study gen-
erated carbon quantum dots (CQDs) from 200 °C treatment (Fig. 4f 
& Fig. S11). Under UV light, blue fluorescence was observed to 
4

account for the CQDs intensity, and quantum yields were mea-
sured from the fluorescence and UV–vis absorption spectra 
(Fig. 4g). Remarkably, two representative mutants showed their 
quantum yields increased by 15 % and 31 % relative to the WT, indi-
cating that genetic engineering of lignin biosynthesis via OsCOMT-
editing could reduce the lignin level and molecular weight in vivo, 
and cause size-reduced LNPs assembly to produce high-yield CQDs 
in vitro. 

Enhanced antioxidant capacity for Cd phytoremediation 

As antioxidant activity is a major property of lignin substrates, 
this study performed two distinct chemical-oxidative assays with 
total lignin and the residual lignin obtained after 1 % NaOH pre-
treatments in two representative mutants and WT (Fig. 5a & b). 
In terms of DPPH radical scavenging activity, a well-defined antiox-
idant assay in vitro [41], we observed that the DPPH solution chan-
ged from purple to yellow during incubation with lignin substrates 
(Fig. 5a), indicating that lignin substrate could capture free radicals 
from DPPH to account for scavenging activity. Incubated with total 
lignin substrates, the two representative mutants showed signifi-
cantly higher scavenging capacities than the WT by 9 % and 10 % 
at p < 0.01 (n = 3). Although alkali pretreatment could cause lignin 
oxidation for reduced scavenging activity, the residual lignin sub-
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Fig. 2. Biomass enzymatic saccharification for bioethanol production after 1 % NaOH pretreatments with mature rice straws in three Oscomt site-mutants and WT. (a) 
A model for biomass degradation and ethanol fermentation; (b, c) Hexoses and total sugars (hexoses + pentoses) released from enzymatic hydrolysis; (d) Ethanol yield by 
yeast fermentation; (e) Total ethanol yield calculated in theory from hexoses and xylose co-fermentation. Data as means ± SD (n = 3) with Student’s t-test as significant 
differences between mutants and WT at **p < 0.01, and the percentage (%) calculated by subtraction between mutant and WT values divided by WT. 

Fig. 3. Characterization of wall polymer extraction and biomass porosity alteration after 1 % NaOH pretreatments with mature straws in three Oscomt mutants and 
WT. (a) A model for wall polymer extraction and biomass porosity augment; (b) Lignin and hemicellulose extraction rates; (c) Raised biomass porosity rates by DY (direct 
yellow) and DB (direct blue) dye staining; (d, e) Correlation analyses between biomass porosity value and wall polymer level or enzymatic saccharification value in the 
pretreated lignocellulose; ** As significant correlation at p < 0.01 levels; # As the average of three mutants. 
strates of the two mutants showed higher scavenging activities 
than those of the WT by 19 % and 11 %, providing dual evidence 
of the improved antioxidant properties of lignin substrates in the 
5

mutants. We also determined the other antioxidant activities of 
total lignin and residual lignin substrates by incubation with ABTS, 
a typical oxidant-chemical (Fig. 5b). Consistently, the two mutants
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Fig. 4. Lignin-derived nanomaterials generated from Oscomt mutants and WT. (a) Molecular weight of lignin; (b) Nanoparticles of total lignin obtained after 67 % H2 SO4 

extraction; (c) Nanoparticles of the lignin substrate extracted with 1 % NaOH pretreatment; (d) Nanoparticle of lignin residues after enzymatic hydrolysis of pretreated 
lignocellulose substrates; (e) TEM image and diameter of lignin nanoparticles (LNPs), Coefficient of variation (CV), data as means ± SD (n = 25) with Student’s t-test as 
significant differences between mutants and WT at **p < 0.01; (f) A schematic diagram for CQDs preparation; (g) Quantum yield by ultraviolet excitation. 

Fig. 5. Characterization of antioxidant activity in Oscomt mutants and WT. (a) DPPH radical scavenging by total lignin extracted from raw material and residual lignin 
obtained after 1 % NaOH pretreatment; (b) ABTS antioxidant activities; (c) The images of rice 30-day-old seedlings co-supplied with 0.2 mM Cd for 15 days; (d, e) Cd and H2 O2 

contents of rice seedlings. Data with error bars as means ± SD (n = 3) with Student’s t-test as significant differences between mutants and WT at **p < 0.01. 
showed significantly higher antioxidant activities than those of the 
WT at p < 0.01 levels, which reconfirmed the much-enhanced 
antioxidant capacities in the mutants.

To determine the biological function of the antioxidant proper-
ties of lignin in plant growth and development, we conducted a 
hydroponic culture with young rice seedlings co-supplied with 
Cd, a stable oxidant chemical (Fig. 5c). Even though Cd accumula-
tion could cause oxidative damage in plants [42,43], this study 
determined much higher Cd contents in the young seedlings of 
two mutants with increased Cd rates by 49 % and 66 % relative to 
the WT (Fig. 5d). Accordingly, we measured the H2O2 levels of
6

young seedlings (Fig. 5e), which has been defined as a parameter 
directly accountable for the degree of plant oxidation in vivo 
[44,45]. Without any Cd supplementation, the two representative 
mutants contained significantly lower H2O2 levels than the WT 
by 23 % and 31 % at p < 0.01 (n = 3), which was consistent with 
the much-improved antioxidant capacity of the lignin substrates 
examined. Under Cd supply, the two mutants and WT showed sig-
nificantly increased H2O2 levels of 13 %, 20 %, and 24 %, respectively 
(Fig. S12), indicating distinct oxidative responses to Cd stress in 
these plants. Nevertheless, despite much more Cd accumulation 
in their young seedlings (Fig. 5d), the two mutants maintained sig-
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nificantly lower H2O2 levels than those of the WT by 31 % and 38 % 
(Fig. 5e), indicating the lignin modification of Oscomt mutants 
could remarkably improve plant antioxidant capacity for enhanced 
Cd phytoremediation.

Discussion 

Plant cell walls represent substantial biomass resources trans-
formable into renewable biofuels and valuable bioproducts; how-
ever, lignocellulose recalcitrance primarily determines costly 
biomass processes [46]. Considering that lignin is a major contribu-
tor to the recalcitrance, genetic engineering of lignin biosynthesis 
has been attempted to reduce lignin deposition along with the mod-
ification of lignin-carbohydrate complexes in various bioenergy 
crops [8,9,38]. As lignin biosynthesis requires several enzymes for 
multistep catalysis [47,48], the selection of an appropriate gene for 
effective genetic-manipulation is increasingly being considered a 
primary effort for lignin modification. Based on major findings as 
Fig. 6. Characterization of distinct OsCOMT inhibitions of three monomer (H, G, S
functional nanomaterial generation in vitro in Oscomt mutants. (a) Three-monomer a
repressed with one site (x1); (b) OsCOMT site mutations for lignin modification; Corr
antioxidation activity (d); * and ** as significant correlations at p < 0.05 and 0.01 leve
hydroxylase, CCR Cinnamoyl-CoA reductase, HCT Quinate shikimate p-hydroxycinna
methyltransferase, CCoAOMT, Caffeoyl-CoA O-methyltransferase, SAD Sinapyl alcohol de
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previously achieved [43,44], this study proposes a hypothetical 
model of lignin modification by highlighting the potential silencing 
frequences of COMTs in the Oscomt mutants (Fig. 6a). As the COMTs 
have isoforms for putative catalytic activities [49,50], this stud  
attempts to demonstrate that genetic knock-out of OsCOMT gene 
could cause a predominately reduced S-monomer synthesis for rela-
tively increased G-monomer and FA proportions examined in the 
three mutants ( 

y

Fig. 1). However, such hypothesis requires a further 
clarification via biochemical assays in the future. Given that COMT 
is directly involved in catalysis of FA, G- and S-monomer syntheses, 
it is assumed that OsCOMT could be one of the desirable genes for 
specific genetic modification of lignin composition and assembly. 
Conversely, despite three Oscomt-1,2,3 mutants show different 
mutation sites for genomic knock-out of OsCOMT, they  all  remain
similar in plant growth phenotype and lignin biosynthesis regula-
tion, indicating that genome editing with OsCOMT via modern 
CRISPR/cas9 technology should be effective for the promising 
genetic-modification of lignin biosynthesis in bioenergy crops. 
) and FA syntheses accountable for characteristic lignin assembly in vivo and 
nd FA synthetic pathways, red sparking as inhibition in site mutant, # As COMT was 
elation analyses between three monomers/FA levels and lignin Mws (c) or lignin 
ls. 4CL 4-coumarate CoA ligase, C3H 4-coumarate 3-hydroxylase, F5H Ferulate 5-
moyl transferase, CAD Cinnamyl alcohol dehydrogenase, COMT Caffeic acid O-
hydrogenase.
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As the S-monomer has a relatively higher molecular mass than 
the G-monomer and FA compounds, the significantly decreased 
lignin levels and molecular weights in the three mutants could 
be mainly due to their predominantly reduced S-monomer levels 
and relatively increased G-monomer and FA contents (Fig. 6b). 
These findings are confirmed by either the negative correlation 
between lignin molecular weight and S-monomer level or the pos-
itive correlation between lignin molecular weight and G-
monomer/FA content at p < 0.01 among the three mutants and 
wild-type samples examined (Fig. 6c). Given that genetic engineer-
ing of lignin biosynthesis has, in principle, focused on reducing lig-
nin deposition for improved lignocellulose recalcitrance in 
bioenergy crops [2,26], this study achieves an effective lignin 
extraction from mild alkali pretreatment for remarkably increased 
biomass porosity in three mutants, which should be mainly subjec-
tive to their reduced lignin molecular weight and altered lignin 
composition and interlink with xylan. Importantly, such effective 
lignin extraction causes an almost complete biomass enzymatic 
saccharification towards higher bioethanol production and enables 
the generation of different types of size-reduced LNPs with higher 
homogeneity, which should be the major cause for the high yield of 
CQDs in the mutants. 

Because plant cell walls consist of complicated structures with 
diverse biological functions [2,51,52], genetic modification of lig-
nocellulose can simply cause defects in plant growth and adapta-
tion to environmental stresses. Although the three Oscomt 
mutants had significantly reduced lignin levels and altered mono-
lignol composition, they all exhibited slightly affected plant 
growth and biomass yields, mainly because of the significantly 
increased hemicellulose and cellulose contents (Fig. S4), suggesting 
that CRISPR/cas9 editing of OsCOMT may also indirectly regulate 
the biosynthesis of other cell wall polysaccharides in secondary 
cell walls. Thus, it differs from most of the previously identified 
mutants with defective phenotypes [53,54]. Furthermore, the 
hypothetical model indicated that relatively increased G-
monomer and FA contents and a significantly reduced S-
monomer level may cause a synergistic enhancement of lignin 
antioxidant capacity in vivo, owing to their significantly positive 
correlations with the two standard antioxidants in vitro (Fig. 6d). 
Because Cd accumulation can drastically cause oxidative stress in 
plants [6,42], the hypothetic model should explain why the three 
mutants could accumulate much more Cd for phytoremediation. 
As plant antioxidative capacity is defined as an integrated param-
eter accounting for plant responses to various environmental stres-
ses [55–57], it would be interesting to test the resistance and 
tolerance of the three mutants to other biotic and abiotic stresses 
in the field experiments. 

In conclusion, this study demonstrates that CRISPR/cas9 editing 
with OsCOMT can distinctively improve lignocellulose recalcitrance 
by synergistic down-regulation of S-monomer synthesis. This 
could greatly enhance biomass enzymatic saccharification for 
high-yield bioethanol production, and consequently generate 
side-reduced LNPs for yield-raised CQDs. Notably, it is also found 
that specific engineering of lignin biosynthesis has little impact 
on plant growth, but significantly increases plant antioxidant 
capacity for Cd phytoremediation. Therefore, this study provides 
a powerful strategy for the optimal genetic-modification of ligno-
cellulose substrates for high-yield biofuels and value-added bio-
products along with enhanced plant antioxidation capacity. 
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